<u>FINAL</u> YEAR 1 (2016) ANNUAL MONITORING REPORT

BOBS CREEK STREAM MITIGATION SITE

NCDMS Project No. 92879 Contract No. D09023S USACE Action ID No. SAW-2009-917 & NCDWR Project No. 10-0122 SCO No. 08-07308-01 McDowell County, North Carolina

> Data Collection: May-November 2016 Submission: January 2017

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

<u>FINAL</u> YEAR 1 (2016) ANNUAL MONITORING REPORT

BOBS CREEK STREAM MITIGATION SITE

NCDMS Project No. 92879 Contract No. D09023S USACE Action ID No. SAW-2009-917 & NCDWR Project No. 10-0122 SCO No. 08-07308-01 McDowell County, North Carolina

> Data Collection: May-November 2016 Submission: January 2017

PREPARED BY:

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

TABLE OF CONTENTS

1.0	PROJECT SUMMARY	. 1
	METHODS	
3.0	REFERENCES	. 5

APPENDICES

APPENDIX A. SITE LOCATION MAP AND BACKGROUND TABLES

Figure	1	Site I	Location
riguit	1.	SIL	Jocation

- Table 1. Project Components and Mitigation Units
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes Table
- APPENDIX B. VISUAL ASSESSMENT DATA
 - Figures 2, 2A-2B. Current Conditions Plan View
 - Figures 3, 3A-3B. Project Assets
 - Tables 5A-5B. Visual Stream Morphology Stability Assessment
 - Table 6. Vegetation Condition Assessment
 - Stream Fixed Station Photo Points
 - Vegetation Plot Photographs
- APPENDIX C. VEGETATION DATA
 - Table 7. Vegetation Plot Success Summary
 - Table 8. CVS Vegetation Plot Metadata
 - Table 9. Total Planted Stems by Plot and Species

APPENDIX D. STREAM MEASUREMENT AND GEOMORPHOLOGY DATA

- Cross-section Plots
- Longitudinal Profile Plots
- Substrate Plots
- Tables 10A-10B. Baseline Morphology and Hydraulic Summary
- Tables 11A-11B. Morphology and Hydraulic Monitoring Summary
- APPENDIX E. HYDROLOGY DATA
 - Table 12. Verification of Bankfull Events

1.0 PROJECT SUMMARY

The North Carolina Division of Mitigation Services (NCDMS) has established the Bobs Creek Stream Mitigation Site (Site). The primary goals of the project focused on improving water quality by reducing nutrient loading from the on-site buffalo and horse operation, reducing excess sedimentation input from site channel banks and hill slopes, increasing the attenuation of floodwater flows, and restoring and enhancing aquatic and riparian habitat. These goals were accomplished through the following objectives.

- Reduce point (i.e. buffalo directly accessing the channel) and non-point source (i.e. stormwater runoff through pastures) pollution associated with an on-site buffalo and horse operation by exclusionary fencing from the stream and riparian buffer, and by providing a vegetative buffer on stream banks and adjacent floodplains to treat nutrient enriched surface runoff from adjacent pastureland.
- Stabilize degraded portions of on-site streams, to reduce sediment inputs. Stabilization methods will include the following.
 - 1. Restoring a stable dimension, pattern, and profile to selected sections of channels to ensure the channel will transport and attenuate watershed flows and sediment loads without aggrading or degrading.
 - 2. Stabilize selected channel banks by excavating bankfull benches, placing stream structures to reduce shearing forces on outside meander bends, and planting native vegetative species to provide soil stability.
 - 3. Stabilize selected channel banks by matting and planting native vegetative species to establish root masses along channel and valley side slopes.
- Improve aquatic habitat by enhancing stream bed variability, providing shading/cover areas within the stream channel, and introducing woody debris in the form of rootwads, log vanes, and log sills.
- Diversify aquatic habitat by creating floodplain oxbows that will be breeding grounds for amphibians and also store overbank flows from adjacent stream channels.
- Enhance fish passage within Bobs Creek and UT 8 Bobs Creek. This is accomplished by removing livestock fencing that has become clogged with debris on Bobs Creek, and restoring UT 8 Bobs Creek and replacing an existing perched culvert to allow fish passage upstream.
- Enhance riparian wildlife habitat by fencing livestock out of existing and restored riparian buffers as well as installing alternative watering devices that will ensure livestock have sufficient watering areas. This is detailed further in the Farm Management Plans completed for the site by NCDMS.
- Enhance wildlife habitat by vegetating existing denuded riparian buffers with native trees, shrubs, herbs, and grasses. Forest vegetation species were selected by studying a Reference Forest Ecosystem located on-site and reviewing Montane Alluvial Forest species listed in *Classification of the Natural Communities of North Carolina: Third Approximation* (Schafale and Weakley 1990).
- Create wildlife corridors through agricultural lands which have significantly dissected the landscape. The corridors will provide connectivity to a diversity of habitats including mature forest, early successional forest, stream-side forest, riparian wetlands, and uplands.

<u>Stream Success Criteria</u>: Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system.

Collected data will be utilized to determine the success in restoring stream channel stability. Specifically, the width-to-depth ratio and bank-height ratios should be indicative of a stable or moderately unstable channel with minimal changes in cross-sectional area, channel width, and/or bank erosion along the

monitoring reach. In addition, channel abandonment and/or shoot cutoffs must not occur and sinuosity values must remain relatively constant. Visual assessment of instream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

<u>Stream Dimension</u>: General maintenance of a stable cross-section and hydrologic access to the floodplain features over the course of the monitoring period will generally represent success in dimensional stability. Some changes in dimension (such as lowering of bankfull width) should be expected. Riffle cross-sections should generally maintain a bank-height ratio approaching 1.0, with some variation in this ratio naturally occurring. Pool cross-sections naturally adjust based on recent flows and time between flows, therefore more leeway on pool cross-section geometry is expected.

<u>Stream Pattern and Profile</u>: The profile should not demonstrate significant trends towards degradation or aggradation over a significant portion of a reach. Additionally, bed form variables should remain noticeably intact and consistent with original design parameters that were based off of reference conditions. Pattern features should show little adjustment over the standard 5-year monitoring period and will be monitored to ensure adjustment is minor prior to close out.

<u>Substrate</u>: Substrate measurements should indicate the progression towards or the maintenance of the known distributions from the design phase.

<u>Sediment Transport</u>: There should be an absence of any significant trend in the aggradational or depositional potential of the channel.

<u>Hydraulics</u>: A minimum of two bankfull events must be documented within the standard 5-year monitoring period. The two bankfull events shall occur within separate years.

Vegetation Success Criteria: Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria are dependent upon the density and growth of characteristic forest species. An average density of 320 stems per acre of planted stems must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4 and 260 planted stems per acre in year 5.

The Bobs Site is located approximately five miles southeast of the town of Marion (Figure 1, Appendix B). The Site is situated due southwest of the intersection of Marlowe Road and Fat Wall Road in McDowell County, North Carolina and is located within the United States Geological Survey (USGS) Hydrologic Unit and Targeted Local Watershed 03050101040010 (North Carolina Division of Water Quality Subbasin 03-08-30) of the Catawba River Basin and will service USGS 8-digit Cataloging Unit 03050101.

The contributing watersheds are characterized primarily by forest land (approximately 87 percent of the total area) with pasture at the lower elevations (approximately 10 percent of the total area) and low-density residential development scattered along the outer fringes of the pasture/agricultural land. Impervious surfaces appear to account for approximately one percent of the watershed land surface. Prior to Site construction, riparian vegetation had been removed, stream channels were manipulated, and hoof shear from livestock on stream banks and floodplain soils was responsible for degraded water quality and unstable channel characteristics (stream entrenchment, erosion, and bank collapse) within Site streams.

Project mitigation efforts resulted in the following.

- Restore 929 linear feet of stream
- Enhance (Level I) 238 linear feet of stream
- Enhance (Level II) 402 linear feet of stream
- Preserve 6794 linear feet of stream
- Preserve 0.35 acres of riparian wetland

The Muddy Creek Restoration Partnership (Partnership) was formed in 1998 to address impacts to the Muddy Creek Watershed. The Partnership completed the *Muddy Creek Watershed Restoration Initiative Feasibility Report and Restoration Plan* (Watershed Plan) for the Muddy Creek Watershed in December of 2003 (MCRP 2003). Since 2004 NCDMS has informally participated in the Partnership by implementing priority projects named by the partnership and adopted the 2003 report as part of its Local Watershed Plan (LWP). The NCDMS's *Upper Catawba River Basin Restoration Priorities* (2009) identifies North Muddy Creek as a Targeted Local Watershed (TLW). The Site is located within the North Muddy Creek Watershed. In 2008 NCDMS contracted with a consulting firm to conduct outreach programs with landowners and identify additional project sites in the Muddy Creek Watershed.

The primary goals identified by the Partnership's Watershed Plan include the following.

- 1. Restore the Watershed to its Full Intended Use
- 2. Restore Riparian Buffers
- 3. Enhance Open Space Preservation
- 4. Improve Water Quality
- 5. Restore Physical Habitat
- 6. Establish a Trout Fishery

The Watershed Plan listed the following components of watershed restoration to be expected.

- 1. Natural Channel Design Stream Restoration
- 2. Riparian Reforestation
- 3. Livestock Exclusion
- 4. Riparian Forest Preservation

These four components were included within the *Bobs Creek Site's Mitigation Plan* (NCEEP 2009). The project restored the watershed to its full intended use by restoring a stream, floodplain, and riparian wetland ecosystem through stream and wetland restoration, enhancement and preservation. The project restored riparian buffers through revegetation of buffer zones with native riparian and wetland species along all Site streams. The project enhanced open space preservation by placing Site streams, wetlands, and their buffers into a permanent conservation easement. The overall Site helps improve water quality by reducing sedimentation in on-Site streams and planted a vegetated riparian buffer that filters nutrients from adjacent pasturelands. Additionally, exclusionary fencing and alternate watering devices removed livestock from accessing on-site channels and riparian buffers. The project restored and enhanced physical habitat for both aquatic and terrestrial species by planting native vegetation along stream banks and riparian buffers, creating wildlife corridors through a dissected landscape, and restoring bedform variability to Site streams. The stabilization of streams and buffers in the project area enhanced water quality in downstream receiving waters, which should help in the re-establishment of the watershed's ability to host trout and enhance their ability to propagate.

Site design was completed in April 2014. Site construction was completed in December 2015 and Site planting was completed in December 2015. Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

2.0 METHODS

Monitoring of restoration efforts will be performed for five years or until success criteria are fulfilled. Monitoring is proposed for the stream channel and vegetation. In general, the restoration success criteria, and required remediation actions, are based on the *Stream Mitigation Guidelines* (USACE et al. 2003). Monitoring features are described below and are depicted on Figures 2A-B (Appendix B).

<u>Streams</u>

The restored stream reaches are proposed to be monitored for geometric activity as follows.

- 850 linear feet of stream profile
- 4 riffle cross-sections
- 1 pool cross-section

The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) meander wavelength, 7) belt-width, 8) water surface slope, and 9) sinuosity. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year. Pebble counts will be completed at the 4 riffle cross-sections to be used for substrate analysis (Appendix D). Annual photographs will include 27 fixed station photographs (Appendix B). In addition, the Site contains two stream crest gauges to assist with documentation of bankfull events. One bankfull event has been documented to date during monitoring year 1 (2016) (Table 12, Appendix E).

Early in Year 1 (2016), several structures were damaged and surrounding streambanks were eroded by significant storm events that occurred shortly after Site construction. Warranty repair work was completed in October 2016 to address these issues. The repaired structures and banks currently appear stable. They will be monitored throughout the remainder of the monitoring period to determine if the repair work sufficiently resolved the issues and if any additional repairs will be required. Currently, stream measurements are meeting success criteria.

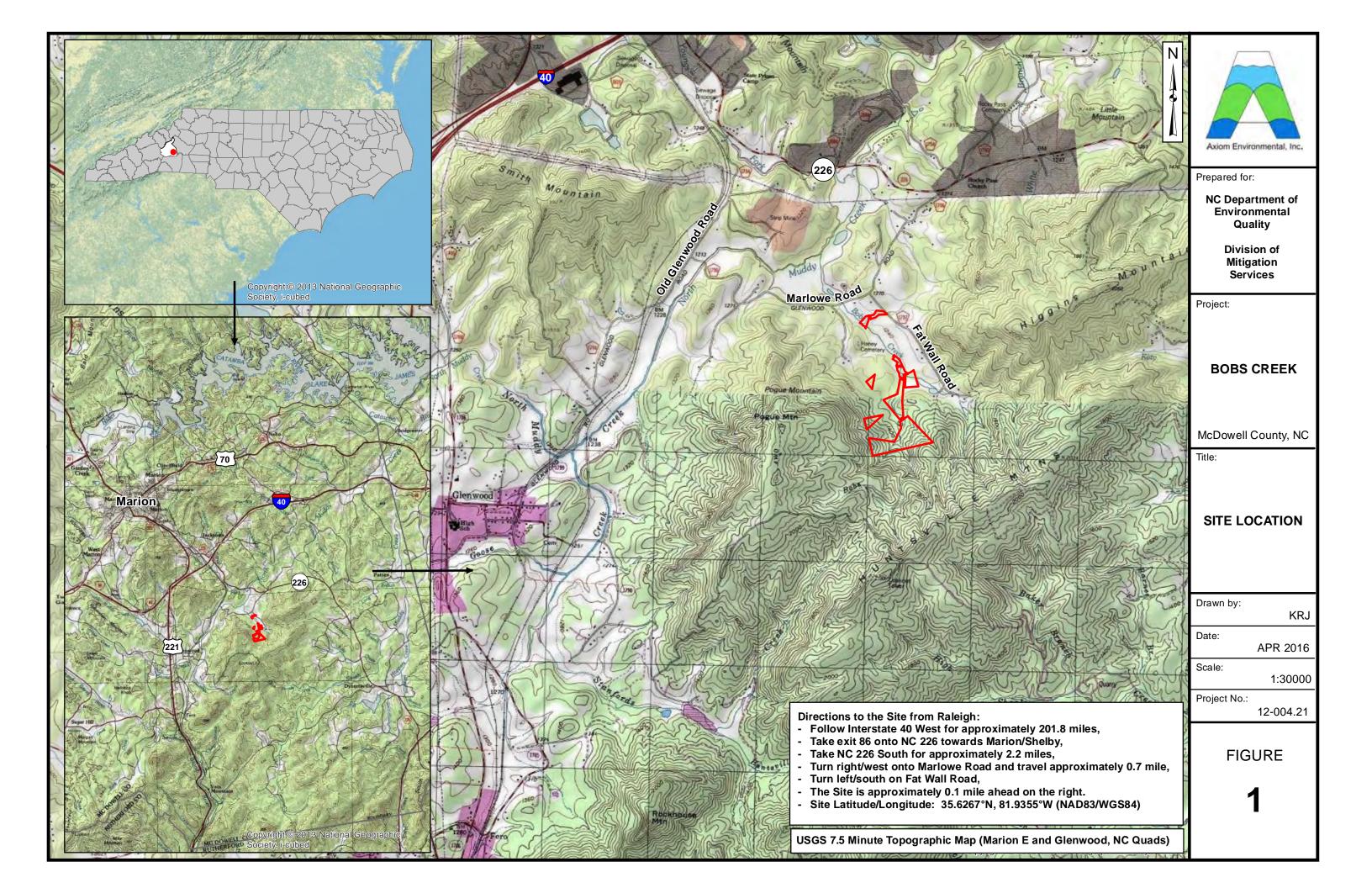
Vegetation

Restoration monitoring procedures for vegetation will monitor plant survival and species diversity. The Site planting area consists of 1.8 acres. After planting was completed, three vegetation plots were installed and monitored at the Site; results can be found in Appendix C. Annual measurements of vegetation will consist of the following.

- 2 plant warranty inspection plots (only monitoring years 1-3)
- 3 CVS vegetation plots

A photographic record of plant growth should be included in each annual monitoring report; baseline photographs are included in Appendix B. During the first year, vegetation will receive a cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by nuisance species. Subsequently, quantitative sampling of vegetation will be performed as outlined in the *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008) in September of the first monitoring year and annually between June 1 and September 30 for the remainder of the monitoring period until vegetation success criteria are achieved.

Year 1 stem count measurements indicate planted stem densities are well above the required 320 stems per acre based on permanent CVS and temporary warranty plots combined. Planted stem densities for permanent CVS plots is 432 planted stems per acre (Table 9, Appendix C). Planted stem densities of warranty plots is 445 planted stems per acre (Table 8, Appendix C). Total planted stem density based on warranty and CVS plots is 437 planted stems per acre across the Site. In addition, all three individual CVS plots and both warranty plots met success criteria based on planted stems alone (Table 7, Appendix C). Therefore, the Site is currently meeting vegetation success criteria.


3.0 REFERENCES

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- Muddy Creek Restoration Partners (MCRP), 2003. Feasibility Report and Restoration Plan for the Muddy Creek Watershed.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Bobs Creek Stream and Wetland Mitigation Site Mitigation Plan. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Upper Catawba River BasinRestoration Priorities 2009 (online). Available: http://www.nceep.net/services/restplans/Upper_Catawba_RBRP_2009.pdf [March 12, 2009]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- Rosgen D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Ccarolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Army Corps of Engineers (USACE), United States Environmental Protection Agency (USEPA), North Carolina Wildlife Resources Commission (NCWRC), Natural Resources Conservation Service (NRCS), and North Carolina Division of Water Quality (NCDWQ). 2003. Stream Mitigation Guidelines. State of North Carolina.

Weather Underground. 2016. Station KFQD at Bostic, North Carolina (online). Available: <u>www.wunderground.com/history/airport/KFQD/</u> [December 7, 2016]. Weather Underground.

Appendix A. Site Location Map and Background Tables

Figure 1. Site Location Table 1. Project Mitigation Components Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

Table 1. Project Components and Mitigation CreditsBobs Creek Mitigation Site/ DMS Number 92879

				Mitigatio	on Credit Summation	18					
Stream	Ripa	rian Wetland	Nonripa	rian Wetland	Bu	ffer	Niti	rogen Offset Phosphorous Offset			
2607		0.07									
					jects Components	r.	r				
Project Component –or-Ro ID	each	Stationing	Existing Footage or Acreage	Restoration Footage or Acreage	Restoration Level/Equivalent	Mitigation Ratio	Mitigation Credits	Comment			
Bobs Creek Bob Creek As-built Plan Stati		39+86 - 43+21 (09+90 - 13+25)		335 335	Restoration (PI)	1:1	335		away from terrace and around g mature vegetation.		
Bobs Creek		36+74 - 37+21 37+89 - 38+67 39+14 - 39+50	3315	161	Enhance I	1.5:1	107	Bankfull bench excavation, channel struct and vegetative plantings on degraded ba			
Bobs Creek $37+21-37+89$ $38+67-39+14$ $39+50-39+86$ 151Enhance II		Enhance II	2.5:1	60	Exclusionary fencing and permanent conservation easement. The easement break at 39+86 has been removed from credit summation.						
Bobs Creek		10+00 - 36+74		2674	Preservation	5:1	535	Two easement breaks have been removed from credit summation.			
UT 1 Bobs Creek		10+00 - 20+60	1060	1060	Preservation	5:1	212				
UT 2 Bobs Creek		10+00 - 15+90	590	590	Preservation	5:1	118				
UT 3 Bobs Creek		10+00 - 15+30	530	530	Preservation	5:1	106	The easement break has been removed f			
UT 4 Bobs Creek		10+00 - 16+51 10+00 - 10+75	726	726	Preservation	5:1	145	cre	edit summation.		
UT 5 Bobs Creek		10+00 - 12+24	224	224	Preservation	5:1	45				
UT 6 Bobs Creek		$\begin{array}{c} 10 + 17 - 10 + 37 \\ 10 + 73 - 10 + 78 \\ 12 + 50 - 12 + 76 \end{array}$		51	Enhance II	2.5:1	20	Vegetative planti	ngs on degraded meanders and matting.		
UT 6 Bobs Creek		$\begin{array}{c} 10{+}00{-}10{+}17\\ 10{+}37{-}10{+}73\\ 10{+}78{-}12{+}50\\ 12{+}76{-}13{+}37 \end{array}$	369	286	Preservation	5:1	57	57			
UT 7 Bobs Creek		15+23 - 15+48		25	Enhance I	1.5:1	17	Bankfull bench excavation, channel structures, and vegetative plantings on degraded banks.			
UT 7 Bobs Creek		10+00 - 15+23 15+48 - 16+36	682	611	Preservation	5:1	122		reak at the crossing has been from credit summation.		

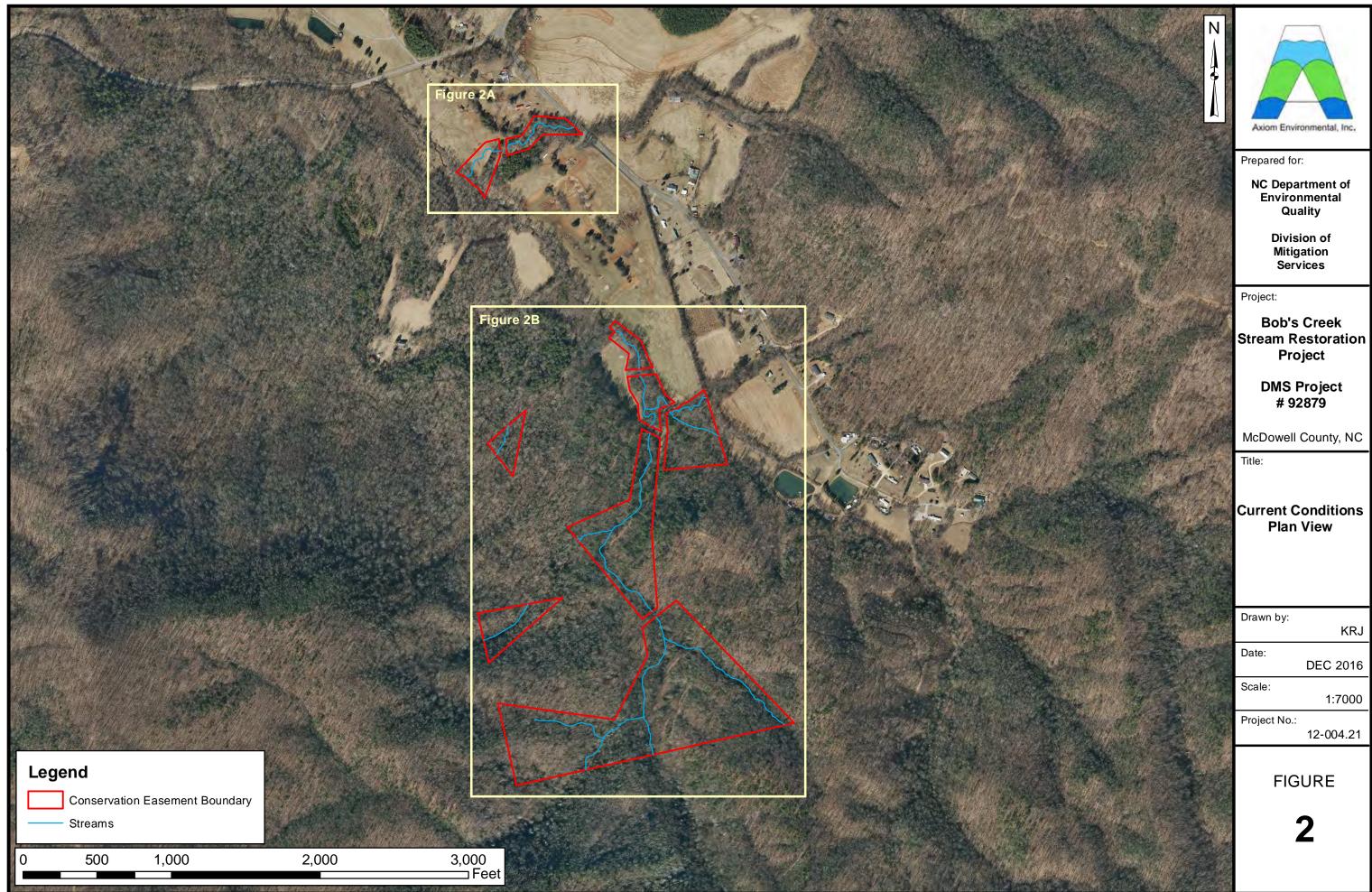
UT 8 Bobs Creek Bob Creek As-built Plan Stationing	$\begin{array}{c} 11+58-13+35\\ (10+00-11+77)\\ 15+22-16+95\\ (10+00-11+73)\\ 17+85-19+39\\ (13+16-14+70) \end{array}$		504	Restoration (PI)	1:1	504	Channel moved away fro around mature vegetation New channel location Downstream Reach. The crossing in the downs removed from cr	on in new valley in e easement break at the tream reach has been	
UT 8 Bobs Creek Bob Creek As-built Plan Stationing	16+95 - 17+85 (12+26 - 13+16)	985	90	Restoration (PII)	1:1	90	Channel moved approx west of existing locati		
UT 8 Bobs Creek	$\begin{array}{r} 10 + 93 - 11 + 25 \\ 14 + 45 - 14 + 65 \end{array}$		52	Enhance I	1.5:1	35	Bankfull bench excavat and vegetative planting		
UT 8 Bobs Creek	$\begin{array}{c} 11+25-11+58\\ 13+35-14+45\\ 14+65-15+22 \end{array}$			200	Enhance II	2.5:1	80	Vegetative plantings on matt	6
UT 8 Bobs Creek	10+00 - 10+93		93	Preservation	5:1	19		-	
Wetlands		0.35	0.35	Preservation	5:1	0.07		-	
			Length a	and Area Summations	5				
Restoration Level	Stream (linear	footage)	Riparian	Wetland (acreage)	-	rian Wetland creage)	Buffer (square feet)	Upland (acres)	
			Riverine	Non-Riverine					
Restoration	929								
Enhancement (Level I)	238								
Enhancement (Level II)	402								
Preservation	6,794		0.35						
Totals	8,363		0.35						
Mitigation Units	2,607 SN	lUs	0.07 Riparia WMUs	in		lonriparian WMUs			
			I	3MP Elements					
Element		Loca	tion]	Purpose/Function		Ν	lotes	

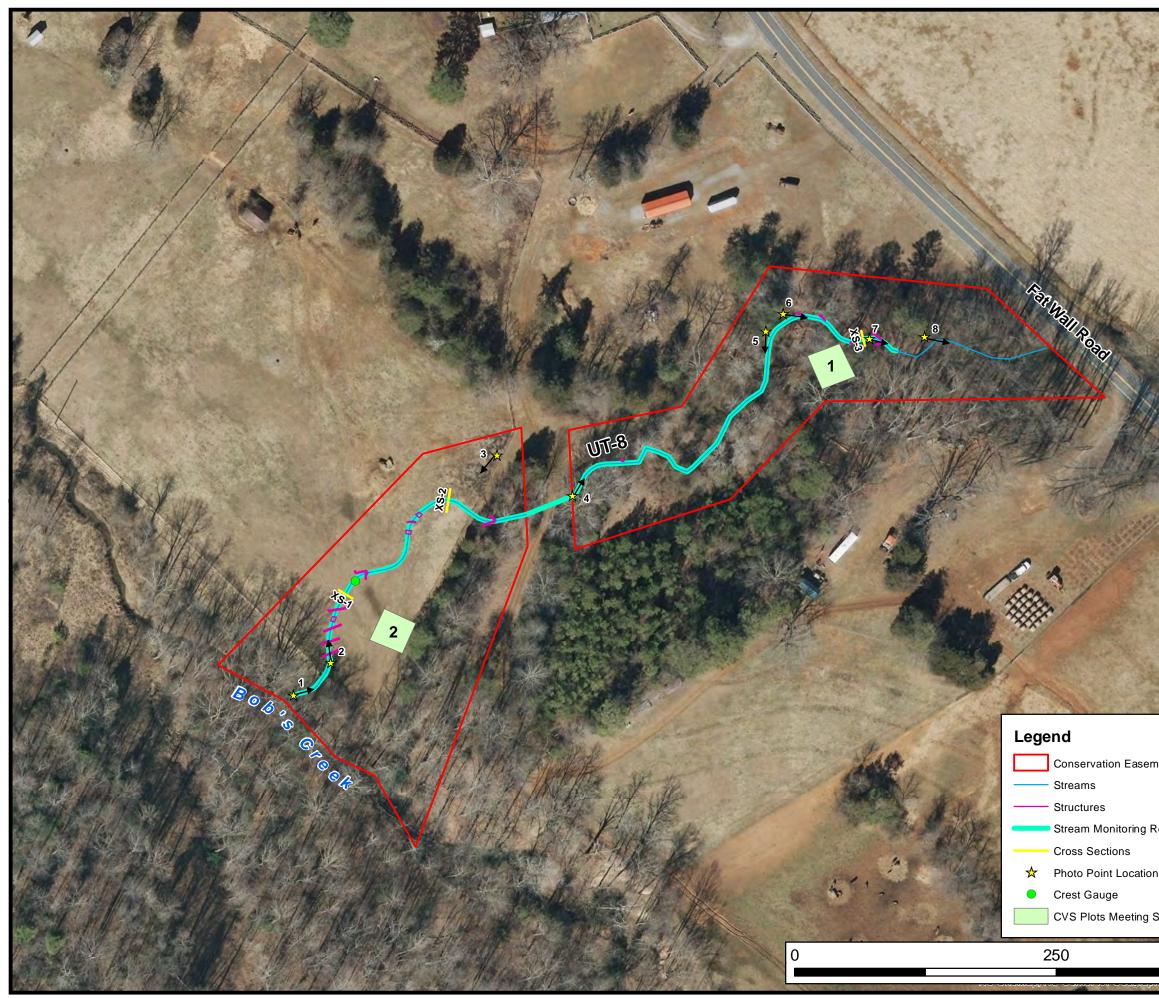
Table 2. Project Activity and Reporting HistoryBobs Creek Mitigation Site/ DMS Number 92879

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Project Institution		
Mitigation Plan	April 2009	December 2009
Permits Issued		
Final Design – Construction Plans		April 2014
Construction		December 2015
Temporary S&E Mix applied to Entire Project Site		December 2015
Permanent Seed Mix applied to the Entire Project Site		December 2015
Bare Root; Containerized; and B&B Plantings for the		December 2015
Entire Project Site		
Baseline Monitoring Document (Year 0 Monitoring	April 2016	July 2016
Baseline)	7 ipin 2010	July 2010
Repair		October 2016
Year 1 Monitoring	November 2016	December 2016
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		

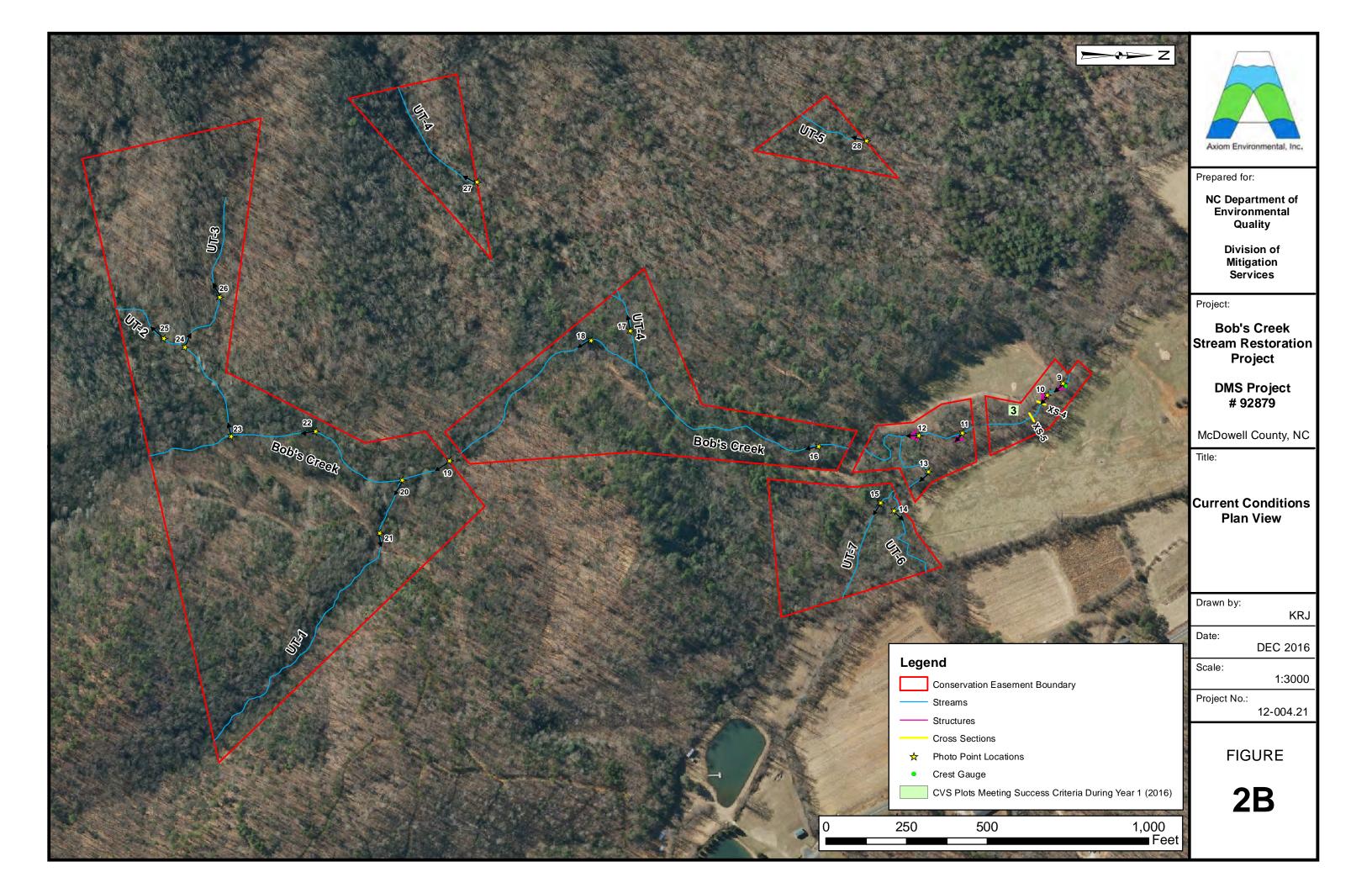
Table 3. Project Contact TableBobs Creek Mitigation Site/ DMS Number 92879

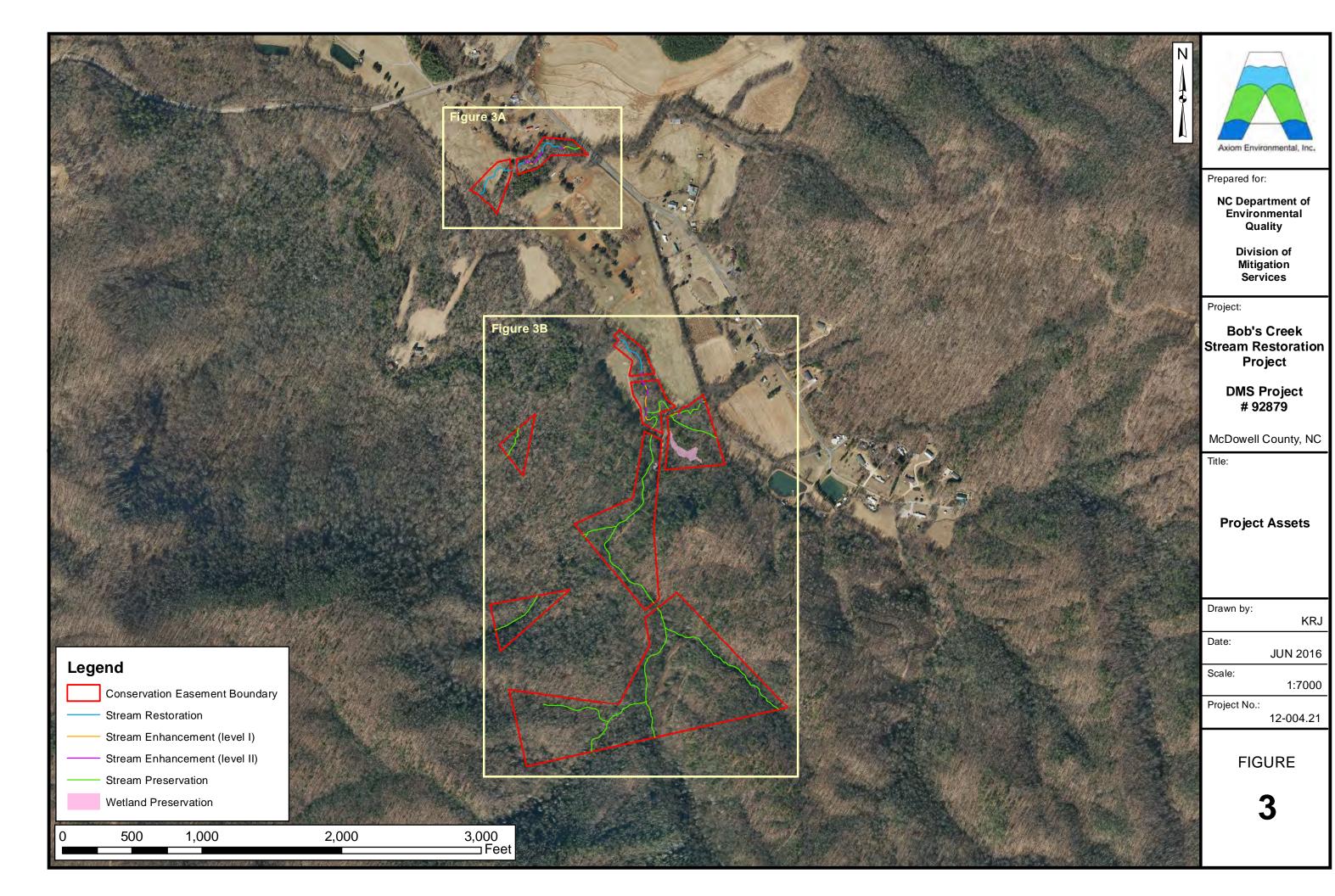
Designer	Florence & Hutcheson Engineering
0	(Now HDR)
	5121 Kingdom Way, Suite 100
	Raleigh, NC 27607
	Kevin Williams (919) 851-6066
Construction Plans and Sediment and	Florence & Hutcheson Engineering
Erosion Control Plans	(Now HDR)
	5121 Kingdom Way, Suite 100
	Raleigh, NC 27607
	Kevin Williams (919) 851-6066
Construction Contractor	Carolina Environmental Contracting, Inc.
	Mount Airy, NC
	(336) 320-3849
Planting Contractor	Keller Environmental
	7291 Haymarket Lane
	Raleigh, NC 27615
	Jay Keller (919) 749-8259
As-built Surveyor	Turner Land Surveying. PLLC
	3719 Benson Drive
	Raleigh, NC 27609
	Elisabeth Turner (919) 827-0745
Baseline Data Collection	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis (919) 215-1693

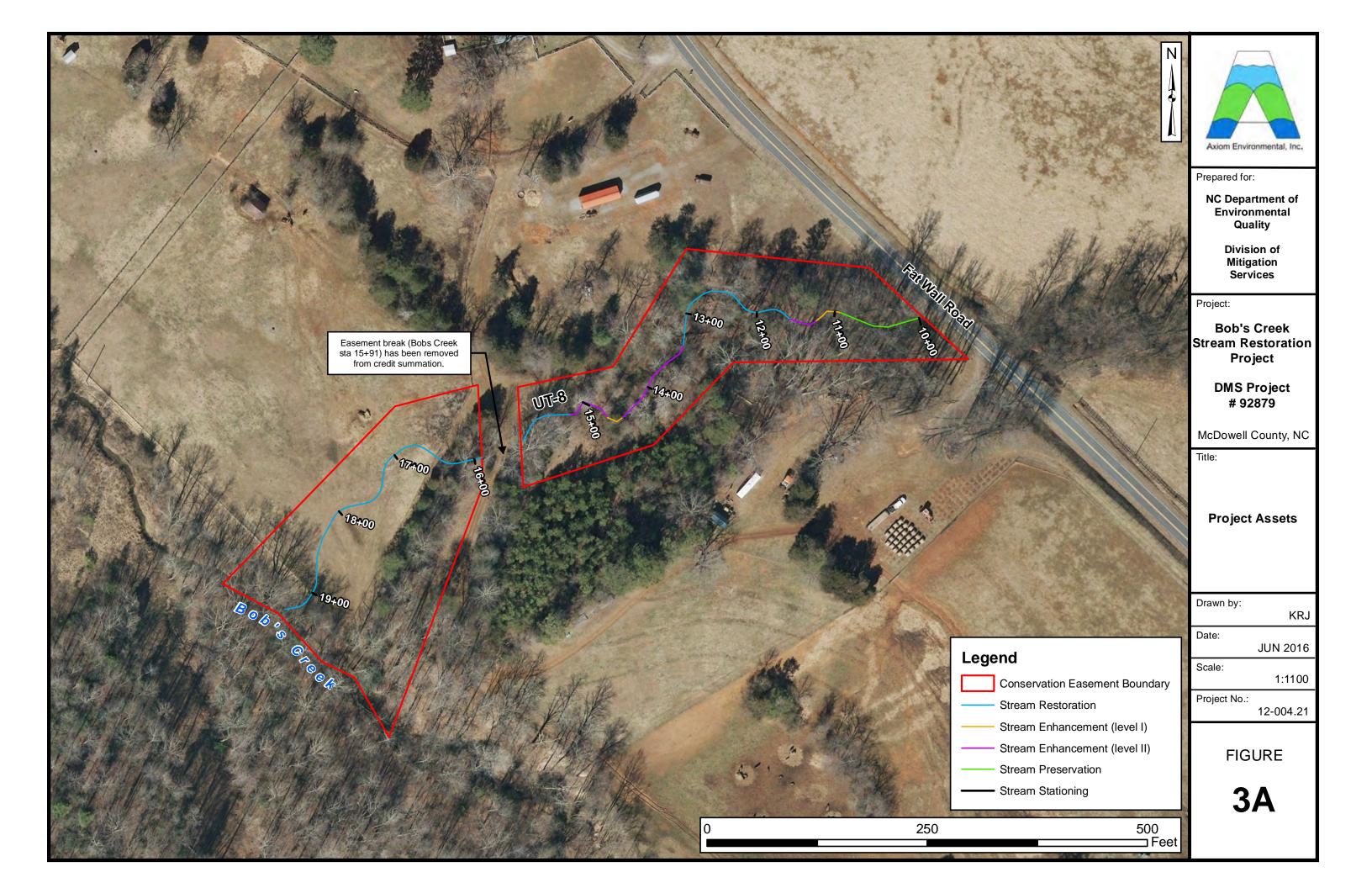

Table 4. Project Baseline Information and AttributesBobs Creek Mitigation Site/ DMS Number 92879

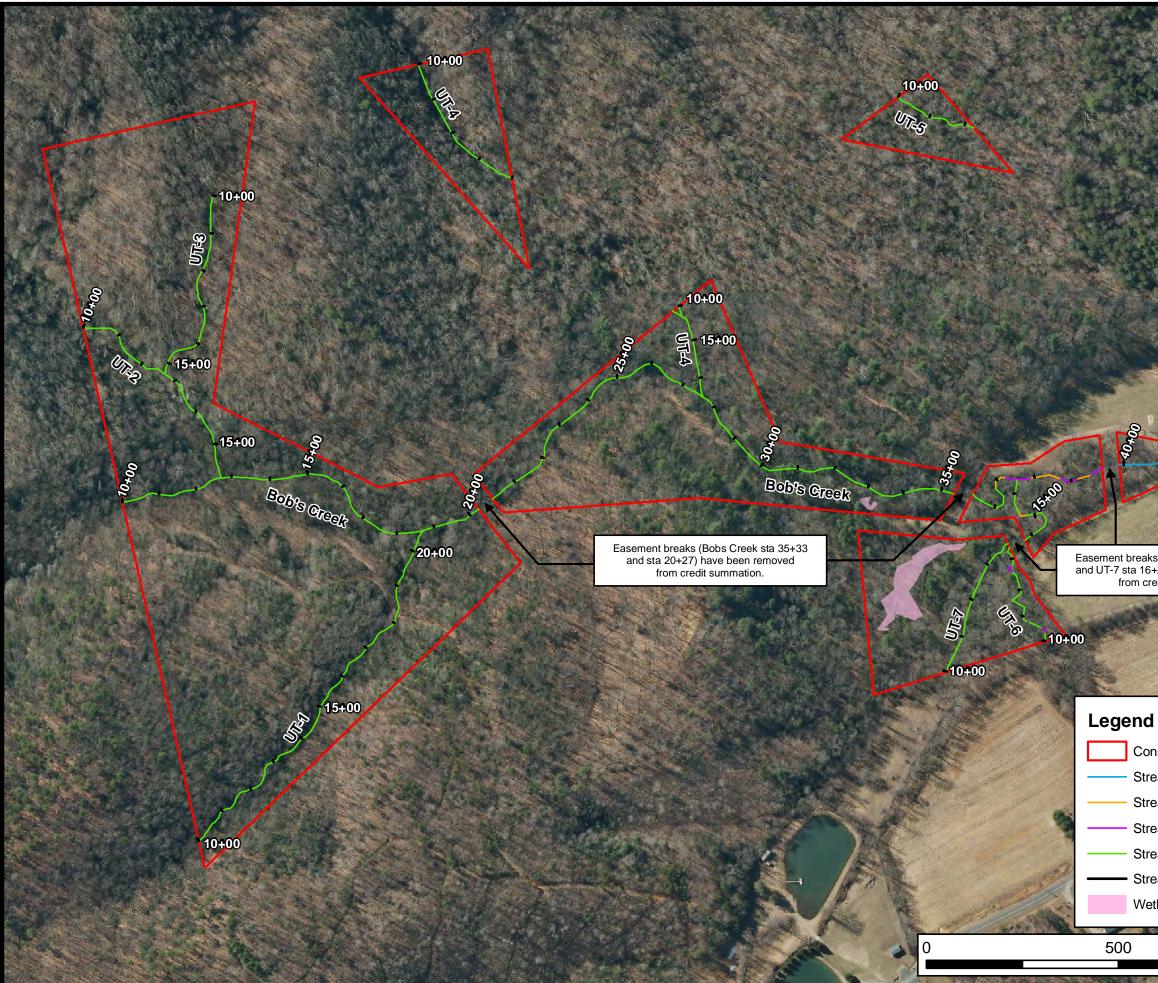

8	Proje	ct Informatio										
Project name												
Project county	McDowell County, North Carolina											
Project area (Acres)			31.8									
Project coordinates (lat/long) 35.6567°N, 81.9355°W												
	Project Watersh	ed Summary	Information									
Physiographic region Blue Ridge												
Project river basin	Catawba River Basin											
USGS hydrologic unit (8 digit)	GS hydrologic unit (8 digit) 03050101											
NCDWQ Sub-basin			03-08-	30								
Project drainage area (acres)			930									
% Drainage area impervious			1									
CGIA land use classification												
	Reach Sur	nmary Inform	nation									
Parameters		•		's to Bobs Cr	·eek							
	Bobs Creek	UT 1	UT 2/3	UT 4/5	UT 6/7	UT 8						
Length of reach (linear feet)	3321	1060	590/530	726/224	337/636	939						
Valley classification	VIII	II	II	II	II & VII	II						
Drainage area (acres)	930	1	20/120	20/40	440/45	60						
NCDWQ stream identification score	46.5	24	39/24	27/34	27/41.5	33.5						
NCDWQ water quality classification	C	С	С	С	С	С						
Morphological description (stream				E &C4 / A	B4 /							
type)	B & C & F4	B4	B4	& B4	C4 & E4	B&C&G4						
Design Rosgen stream type	C4	B4	B4	E &C4 / B4	B4 / C4 & E4	E & C4						
Evolutionary trend												
Design approach (P1, P2, P3, E, etc.)	PI, EI, EII, & P	Р	Р	Р	EI, EII, P	PI. PII, EI, EII, P						
Underlying mapped soils	Tate/Chestnut/ Ashe	Tate	Tate/ Evard/ Cowee	Tate/ Evard	Iotla	Iotla						
Drainage class	Well	Well	Well	Well	SW Poor	SW Poor						
Soil hydric status	Nonhydric	Nonhydric	Nonhydric	Nonhydric	Nonhydric	Nonhydric						
Slope	0.0173	0.191	0.258/ 0.286	0.086/ 0.255	0.039/ 0.047	0.0342						
FEMA classification	Zone AE	Zone X	Zone X	Zone X	Zone X	Zone X						
Native vegetation community	Forest/Pasture	Forest	Forest	Forest	Forest	Pasture						
% Composition of exotic invasive	<5	<5	<5	<5	<5	<5						
spp.	Wetland Su	mmary Info	rmation		<u> </u>	<u> </u>						
Parameters		Wetlan			Wetl	and 2						
Size of wetland (acres)		0.35										
Wetland type		Riparian R	iverine									
Mapped soil series		Tate Loam (W										
Drainage class		Well (po	orly)									
Soil hydric status		Nonhydric (

Source of hydrology	Overbar	hk and groundwater				
Hydrologic impairment		None				
Native vegetation community		Forested				
% Composition of exotic invasive						
spp.		<5				
	Regulatory Co	onsiderations				
Degulation	Resolved?	Supporting				
Regulation	Applicable?	Resolved?	Documentation			
Waters of the US – Section 404	Yes	Yes	SAW-2009-917			
Waters of the US – Section 401	Yes	Yes	SAW-2009-917			
Endencound Species Act	Vaa	Vac	No Effect –			
Endangered Species Act	Yes	Yes	CE Document			
Historic Preservation Act	Yes	Yes	CE Document			
Coastal Zone Management Act	N					
(CZMA/CAMA)	No	NA	NA			
FEMA Floodplain Compliance	Yes	Yes	No Rise			
Essential Fisheries Habitat	No	NA	NA			


Appendix B Visual Assessment Data


Figures 2, 2A-2B. Current Conditions Plan View Figures 3, 3A-3B. Project Assets Tables 5A-5B. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Stream Fixed Station Photo Points Vegetation Plot Photos





	Axiom Environmental, Inc.
7 to that The	Prepared for:
at - The He	NC Department of Environmental Quality
JE HAR	Division of Mitigation Services
Mar and M	Project:
	Bob's Creek Stream Restoration Project
	DMS Project # 92879
	McDowell County, NC
	Title: Current Conditions Plan View
	Drawn by: KRJ
	Date: DEC 2016
nent Boundary	Scale: 1:1100
Reach	Project No.: 12-004.21
ns	FIGURE
Success Criteria During Year 1 (2016)	2A
500 Feet	

Easement breaks (Bobs Creek sta 39+86 and UT-7 sta 16+21) have been removed from credit summation.

Conservation Easement Boundary

- Stream Restoration
- Stream Enhancement (level I)
- Stream Enhancement (level II)
- Stream Preservation
- Stream Stationing
- Wetland Preservation

Axiom Environmental, Inc.

Prepared for:

NC Department of Environmental Quality

> **Division of** Mitigation Services

Project:

Bob's Creek Stream Restoration Project

> DMS Project # 92879

McDowell County, NC

Title:

Project Assets

Drawn by:

KRJ

Date: JUN 2016

Scale:

1:3000

Project No .:

12-004.21

FIGURE

1,000 ⊐ Feet

Table 5A Reach ID Assessed Length

<u>Visual Stream Morphology Stability Assessment</u> Bobs Creek 647

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	7	7			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	6	6			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	6	6			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	6	6			100%			
		2. Thalweg centering at downstream of meander (Glide)	6	6			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	7	7			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	7	7			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	7	7			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	7	7			100%			

Visual Stream Morphology Stability Assessment

Table 5B Reach ID Assessed Length

UT8 to Bobs Creek 939

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	26	26			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	25	25			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	25	25			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	25	25			100%			
		2. Thalweg centering at downstream of meander (Glide)	25	25			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	22	22			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	22			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	22	22			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	22	22			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	22	22			100%			

Table 6 Vegetation Condition Assessment

Bobs Creek Mitigation Project

Planted Acreage ¹	2.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	N/A	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%

Easement Acreage ²	42.7					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

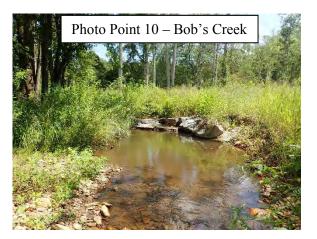
1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

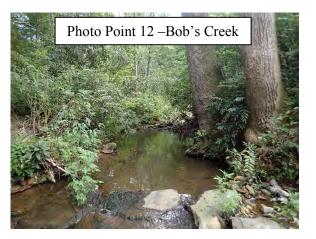
2 = The acreage within the easement boundaries.

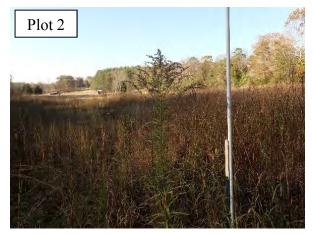
3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly or situations where the condition for an area is somewhere between isolated specimes and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the areast of the executive summary.

Bobs Creek Fixed Station Photographs Taken August 2016







Bobs Creek Vegetation Monitoring Photographs Taken August 2016

Appendix C. Vegetation Plot Data

Table 7. Vegetation Plot Success Summary Table 8. CVS Vegetation Plot Metadata Table 9. Total Planted Stems by Plot and Species

Table 7. Vegetation Flot Success Summary								
Vegetation Plot ID	Vegetation Survival Threshold Met?							
1	Yes							

Yes

Yes

Table 7. Vegetation Plot Success Summary

Table 8.	CVS V	egetation	Plot	Metadata
----------	-------	-----------	------	----------

2

3

Report Prepared By	Phillip Perkinson
Date Prepared	11/8/2016 8:53
database name	Axiom-BobsCreek-2016-A-v2.3.1.mdb
	S:\Business\Projects\12\12-004 EEP Monitoring\12-004.21 Neighbors Bob\Bobs
database location	Creek\MY-01\CVS
computer name	PHILLIP-PC
file size	58728448
DESCRIPTION OF WORK	SHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary of project(s)
Metadata	and project data.
	Each project is listed with its PLANTED stems per acre, for each year. This
Proj, planted	excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes
Proj, total stems	live stakes, all planted stems, and all natural/volunteer stems.
	List of plots surveyed with location and summary data (live stems, dead stems,
Plots	missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of
Damage	total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and	A matrix of the count of PLANTED living stems of each species for each plot;
Spp	dead and missing stems are excluded.
ALL Stems by Plot and	A matrix of the count of total living stems of each species (planted and natural
spp	volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92879
project Name	Bobs Creek
River Basin	Catawba
length(ft)	
stream-to-edge width (ft)	
Required Plots	
(calculated)	
Sampled Plots	3

Tract Mean

100%

Table 9. Total and Planted Stems by Plot and SpeciesDMS Project Code 92879. Project Name: Bobs Creek

					Cur	rent Plo	t Data	(MY1 2	016)					Annua	Means	S	
			928	79-01-0	0001	928	79-01-0	002	928	79-01-0	003	М	Y1 (20	16)	N	IYO (20	16)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т
Acer rubrum	red maple	Tree				1	1	1			5	1	1	6	2	2	25
Diospyros virginiana	common persimmon	Tree	1	1	1	1	1	1				2	2	2	4	4	4
Fraxinus pennsylvanica	green ash	Tree	1	1	1							1	1	. 1	1	1	. 1
Liriodendron tulipifera	tuliptree	Tree			3									3			
Nyssa	tupelo	Tree	1	1	1							1	1	. 1			
Nyssa sylvatica	blackgum	Tree	4	4	4	5	5	5				9	ç	9	11	11	. 11
Platanus occidentalis	American sycamore	Tree	3	3	3	1	1	1	4	4	12	8	8	16	10	10	0 10
Quercus nigra	water oak	Tree	1	1	1	1	1	1	2	2	2	4	4	4	5	5	5 5
Quercus phellos	willow oak	Tree	2	2	2	2	2	2	2	2	2	6	6	6	5	5	5 5
		Stem count	13	13	16	11	11	11	8	8	21	32	32	48	38	38	61
		size (ares)		1			1			1			3			3	-
		size (ACRES)		0.02			0.02			0.02			0.07			0.07	
		Species count	7	7	8	6	6	6	3	3	4	8	8	9	7	7	' 7
		Stems per ACRE	526.1	526.1	647.5	445.2	445.2	445.2	323.7	323.7	849.8	431.7	431.7	647.5	512.6	512.6	6 822.9

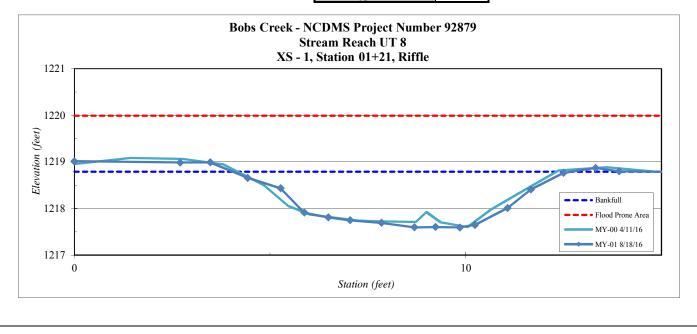
Exceeds requirements by 10% Exceeds requirements, but by less than 10% P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

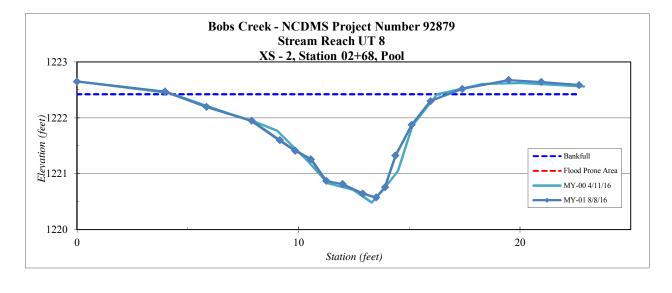
Appendix D. Stream Measurements and Geomorphology Data


Cross Section Plots Longitudinal Profile Plots Substrate Plots Tables 10A-10B. Baseline Stream Data Summary Tables 11A-11B. Monitoring Data-Dimensional Data Summary

Site	Bobs Creek - UT 8
Project Number:	92879
XS ID	XS - 1, Riffle
Reach	UT 8
Date:	8/18/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	1219.01
2.70	1218.99
3.47	1218.99
4.43	1218.66
5.27	1218.43
5.88	1217.91
6.49	1217.81
7.04	1217.75
7.84	1217.69
8.69	1217.60
9.23	1217.60
9.85	1217.59
10.24	1217.65
11.07	1218.01
11.67	1218.41
12.5	1218.76
13.3	1218.87
13.9	1218.80
15.0	1218.79

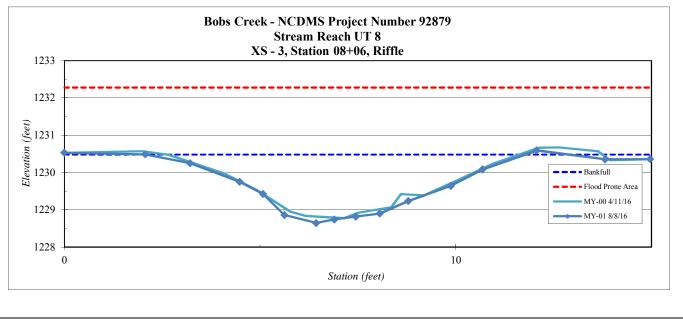
SUMMARY DATA	
Bankfull Elevation:	1218.8
Bankfull Cross-Sectional Area:	6.7
Bankfull Width:	8.7
Flood Prone Area Elevation:	1220.0
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.2
Mean Depth at Bankfull:	0.8
W / D Ratio:	11.3
Entrenchment Ratio:	11.5
Bank Height Ratio:	1.0



Site	Bobs Creek - UT 8	
Project Number:	92879	
XS ID	XS - 2, Pool	
Reach	UT 8	
Date:	8/18/2016	
Field Crew:	Perkinson, Jernigan	

Station	Elevation
0.0	1222.7
4.0	1222.5
5.9	1222.2
7.9	1221.9
9.2	1221.6
9.8	1221.4
10.6	1221.3
11.2	1220.9
12.0	1220.8
12.9	1220.6
13.5	1220.6
13.9	1220.8
14.4	1221.3
15.1	1221.9
16.0	1222.3
17.4	1222.5
19.5	1222.7
21.0	1222.6
22.7	1222.6

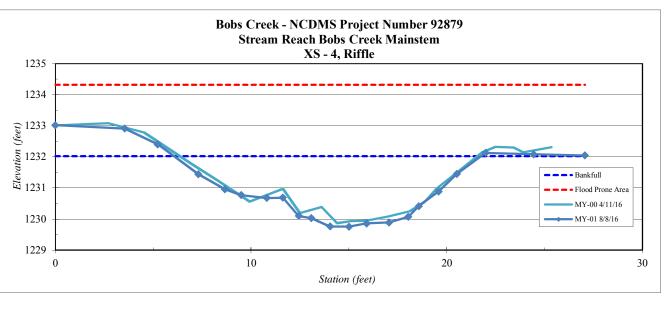
Bankfull Elevation:	1222.4
Bankfull Cross-Sectional Area:	10.1
Bankfull Width:	12.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.8
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0



Site	Bobs Creek - UT 8
Project Number:	92879
XS ID	XS - 3, Riffle
Reach	UT 8
Date:	8/18/2016
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	1230.53
2.06	1230.49
3.21	1230.25
4.47	1229.75
5.07	1229.43
5.62	1228.86
6.43	1228.65
6.90	1228.74
7.45	1228.82
8.06	1228.90
8.78	1229.23
9.87	1229.64
10.69	1230.09
12.07	1230.59
13.81	1230.36
15.0	1230.36

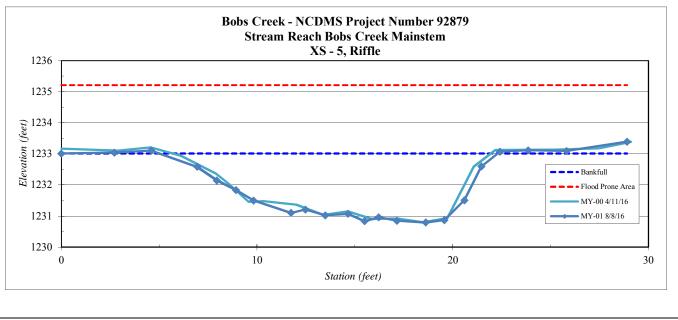
SUMMARY DATA	
Bankfull Elevation:	1230.5
Bankfull Cross-Sectional Area:	9.0
Bankfull Width:	9.7
Flood Prone Area Elevation:	1232.3
Flood Prone Width:	100.0
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.9
W / D Ratio:	10.5
Entrenchment Ratio:	10.3
Bank Height Ratio:	1.0



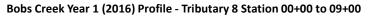
Site	Bobs Creek
Project Number:	92879
XS ID	XS - 4, Riffle
Reach	Bobs Creek
Date:	8/18/2016
Field Crew:	Perkinson, Jernigan

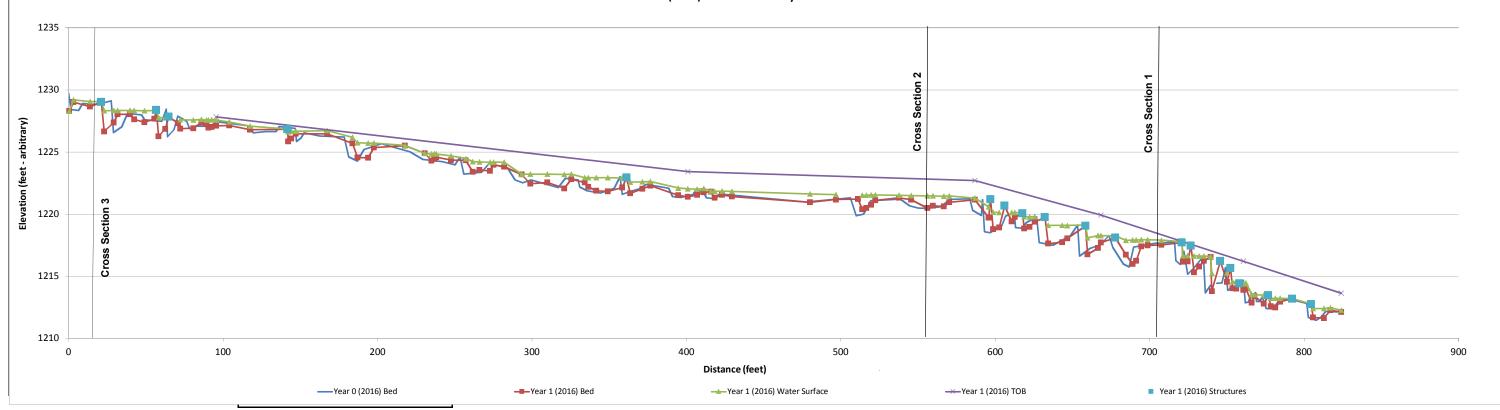
Station	Elevation
0.00	1233.02
3.55	1232.91
5.23	1232.40
7.31	1231.44
8.66	1230.96
9.50	1230.77
10.80	1230.68
11.62	1230.69
12.43	1230.10
13.08	1230.03
14.04	1229.76
15.01	1229.76
15.90	1229.86
17.05	1229.89
18.04	1230.07
18.6	1230.41
19.6	1230.89
20.5	1231.45
22.0	1232.13
24.4	1232.08
27.1	1232.05

SUMMARY DATA	
Bankfull Elevation:	1232.0
Bankfull Cross-Sectional Area:	22.0
Bankfull Width:	15.7
Flood Prone Area Elevation:	1234.3
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.4
W / D Ratio:	11.2
Entrenchment Ratio:	9.6
Bank Height Ratio:	1.0



Site	Bobs Creek
Project Number:	92879
XSID	XS - 5, Riffle
Reach	Bobs Creek
Date:	8/18/2016
Field Crew:	Perkinson, Jernigan


Station	Elevation	
0.00	1233.01	
2.71	1233.04	
4.58	1233.11	
6.94	1232.59	
7.95	1232.15	
8.92	1231.84	
9.83	1231.50	
11.74	1231.10	
12.47	1231.21	
13.49	1231.03	
14.65	1231.07	
15.50	1230.83	
16.21	1230.96	
17.14	1230.85	
18.61	1230.80	
19.6	1230.87	
20.6	1231.51	
21.5	1232.59	
22.4	1233.07	
23.9	1233.12	
25.8	1233.09	
28.9	1233.39	


SUMMARY DATA	
Bankfull Elevation:	1233.0
Bankfull Cross-Sectional Area:	25.5
Bankfull Width:	17.3
Flood Prone Area Elevation:	1235.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.2
Mean Depth at Bankfull:	1.5
W / D Ratio:	11.7
Entrenchment Ratio:	8.7
Bank Height Ratio:	1.0

Project Name	Bobs Creek - Profil	e										-		
Reach	UT 8 Station 00+00) - 09+00												
Feature	Profile													
Date	8/18/16													
Crew	Perkinson, Jernigan	1												
	2016			2016			2017			2018			2019	
	ear 0 Monitoring \Sur			Year 1 Monitoring \			Year 2 Monitoring \			Year 3 Monitoring			Year 4 Monitoring	
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
824.0	1212.1	1212.4	824.0	1212.1	1212.3									
813.9	1212.2	1212.5	817.0	1212.3	1212.4									
811.2	1211.7	1212.5	812.8	1211.6	1212.4									
808.0	1211.5	1212.5	805.9	1211.7	1212.4									
802.8	1211.7	1212.5	804.7	1212.7	1212.8									
801.7	1212.8	1212.9	792.3	1213.2	1213.2									
789.2	1213.2	1213.3	784.4	1212.9	1213.2									
782.8	1212.9	1213.3	781.5	1212.5	1213.2									
779.3	1212.4	1213.3	778.4	1212.6	1213.2									
775.3	1212.4	1213.3	776.8	1213.4	1213.4									
772.9	1213.3	1213.5	774.0	1212.8	1213.5									
771.3	1213.0	1213.5	768.0	1213.4	1213.5									
769.2	1213.0	1213.5	766.1	1212.9	1213.5									
768.5	1213.7		762.4	1214.0	1214.5									
765.0	1213.3	1213.6	760.6	1213.9	1214.4									
763.8	1212.9	1213.6	758.2	1214.4										
762.0	1212.9	1213.6	756.0	1214.0	1214.6									
760.6	1214.6		753.6	1214.0	1214.6									
755.7	1214.2	1214.7	752.3	1215.6										
753.8	1214.1	1214.7	750.1	1214.5	1215.3									
750.6	1213.9	1214.7	745.8	1216.2										
749.0	1215.7		740.3	1213.8	1215.2									
746.8	1214.5	1215.6	739.5	1216.6	1216.6									
743.5	1214.4	1215.6	735.3	1216.2	1216.6									
742.0		1216.2	732.1	1215.8	1216.6									
739.5	1214.3	1215.7	728.8	1215.3	1216.6									
736.0	1213.6	1215.7	726.7	1217.5										
734.9	1216.6	1216 7	724.6	1216.2	1216.7									

	2016	2016	2017	2018	2019
Avg. Water Surface Slope	0.0212	0.0210			
Riffle Length	17	20			
Avg. Riffle Slope	0.0172	0.0175			
Pool Length	15	13			
Pool to Pool Spacing	26	28			

	Project Name: B	obs Creek - UT	8					
	Cross-Se		-					
	Feature	: Riffle						
				2016				Cumulative Percent
Description	Material	Size (mm)	Total #	Item %	Cum %			
Silt/Clay	silt/clay	0.062	4	13%	36%		100%	
	very fine sand	0.125	1	3%	44%		90%	
	fine sand	0.250	1	3%	48%		80%	
Sand	medium sand	0.50	0	0%	48%	cent	70%	
	coarse sand	1.00	0	0%	56%	Per	60%	
	very coarse sand	2.0	2	6%	60%	tive	50%	
	very fine gravel	4.0	1	3%	68%	Cumulative Percent	40%	
	fine gravel	5.7	1	3%	72%	Cur	30%	
	fine gravel	8.0	3	10%	84%		20%	
	medium gravel	11.3	4	13%	92%		10%	
Gravel	medium gravel	16.0	2	6%	92%		0%	
	course gravel	22.3	3	10%	96%		0	
	course gravel	32.0	6	19%	96%		ï	Particle Size (mm)
	very coarse gravel	45	2	6%	96%			
	very coarse gravel	64	0	0%	100%			
	small cobble	90	1	3%	100%			
Cobble	medium cobble	128	0	0%	100%			
Connie	large cobble	180	0	0%	100%			Individual Class Percent
	very large cobble	256	0	0%	100%		100%	
	small boulder	362	0	0%	100%		90%	
Boulder	small boulder	512	0	0%	100%		80%	
Doulder	medium boulder	1024	0	0%	100%	Percent	70%	
	large boulder	2048	0	0%	100%		60%	
Bedrock	bedrock	40096	0	0%	100%	Individual Class	50%	
TOTAL % of	whole count		31	100%	100%	nal C	40%	
			•			vidı	30%	
Summary	v Data					Indi	20% 10%	
D50	9.8						0%	
D84 D95	28							"00" 22 02 02 1 5 x 23 + 13 10 23 25 x2 00 00 12 12 20 25 02 25 02 20 20 20 20
D95	41	L						Particle Size (mm)
								MY0-2016 MY1-2016 MY2-2017 MY3-2018 MY4-2019
								· · · · ·

	Project Name:	Bobs Creek - U	T 8				
		Section: 3					
	Featu	re: Riffle	1				
		a .		2016		Cumulative Percent	
Description	Material	Size (mm)	Total #	Item %	Cum %		
Silt/Clay	silt/clay	0.062	4	14%	33%	90%	
	very fine sand	0.125	1	4%	43%		
<i>a</i> .	fine sand	0.250	2	7%	48%		
Sand	medium sand	0.50	1	4%	52%		
	coarse sand	1.00	3	11%	62%		
	very coarse sand	2.0	1	4%	67%		
	very fine gravel	4.0	1	4%	67%	00% 00% 00% 00%	
	fine gravel	5.7	0	0%	67%		
	fine gravel	8.0	3	11%	71%		
	medium gravel	11.3	6	21%	76%		
Gravel	medium gravel	16.0	4	14%	86%	0 ⁰ , 0, , 10	1000
	course gravel	22.3	0	0%	90%	Particle Size (mm)	×-
	course gravel	32.0	1	4%	95%		
	very coarse gravel	45	1	4%	95%	MY0-2016 MY1-2016 MY2-2017 MY3-2018 MY4-2019	
	very coarse gravel	64	0	0%	95%	0	
	small cobble	90	0	0%	100%		
Cobble	medium cobble	128	0	0%	100%	Individual Class Percent	
Connie	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
	small boulder	362	0	0%	100%	90%	
D 1	small boulder	512	0	0%	100%		
Boulder	medium boulder	1024	0	0%	100%	te 50%	
	large boulder	2048	0	0%	100%	ž 50%	
Bedrock	bedrock	40096	0	0%	100%	\$\$\$ 50% O 40% a 30% b 20%	
TOTAL % of v	whole count		28	100%	100%	<u>-</u>	
Summary	Data	ľ					
D50	6.6					" the	6 00 4
D84	13						100,
D95	28	L				Particle Size (mm)	
						■MY0-2016 ■MY1-2016 ■MY2-2017 ■MY3-2018 ■MY4-2019	

		ection: 4			
	Featur	e: Riffle			
				2016	
Description	Material	Size (mm)	Total #	Item %	Cum %
Silt/Clay	silt/clay	0.062	2	6%	24%
	very fine sand	0.125	1	3%	32%
	fine sand	0.250	1	3%	44%
Sand	medium sand	0.50	1	3%	48%
	coarse sand	1.00	2	6%	56%
	very coarse sand	2.0	3	9%	60%
	very fine gravel	4.0	1	3%	68%
	fine gravel	5.7	2	6%	72%
	fine gravel	8.0	2	6%	80%
	medium gravel	11.3	1	3%	80%
Gravel	medium gravel	16.0	0	0%	84%
	course gravel	22.3	2	6%	96%
	course gravel	32.0	1	3%	96%
	very coarse gravel	45	3	9%	96%
	very coarse gravel	64	4	11%	100%
	small cobble	90	1	3%	100%
Cobble	medium cobble	128	2	6%	100%
Cobble	large cobble	180	2	6%	100%
	very large cobble	256	3	9%	100%
	small boulder	362	1	3%	100%
Boulder	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
FOTAL % of v	whole count		35	100%	100%
Summary					
D50	20.3				
D84 D95	137 234				

	Project Nam	e: Bobs Creek						
	Cross-S	ection: 5						
	Featur	e: Riffle						Cumulative Percent
				2016				Cumulative Percent
Description	Material	Size (mm)	Total #	Item %	Cum %			
Silt/Clay	silt/clay	0.062	0	0%	68%			
	very fine sand	0.125	0	0%	72%			
	fine sand	0.250	0	0%	84%			
Sand	medium sand	0.50	2	7%	84%	cent		
	coarse sand	1.00	3	10%	88%	Per		60%
	very coarse sand	2.0	1	3%	92%	tive		
	very fine gravel	4.0	1	3%	100%	Cumulative Percent		
	fine gravel	5.7	2	7%	100%	Cur	2	
	fine gravel	8.0	1	3%	100%			
	medium gravel	11.3	3	10%	100%			
Gravel	medium gravel	16.0	2	7%	100%			0 ⁰ , 0, , , ,0 ¹⁰ , ¹⁰ 0
	course gravel	22.3	0	0%	100%			Particle Size (mm)
	course gravel	32.0	2	7%	100%			
	very coarse gravel	45	1	3%	100%			MY0-2016 MY1-2016 MY2-2017 MY3-2018 MY4-2019
	very coarse gravel	64	5	17%	100%			4
	small cobble	90	3	10%	100%			· · · · · · · · · · · · · · · · · · ·
Cobble	medium cobble	128	3	10%	100%			Individual Class Percent
CODDIC	large cobble	180	1	3%	100%			individual Class Fercini
	very large cobble	256	0	0%	100%			
	small boulder	362	0	0%	100%			100%
Boulder	small boulder	512	0	0%	100%			90%
Douluei	medium boulder	1024	0	0%	100%	E		80%
	large boulder	2048	0	0%	100%	erce		70%
Bedrock	bedrock	40096	0	0%	100%	Ss P	4	50%
TOTAL % of w	hole count		30	100%	100%	Individual Class Percent	4	40%
			•			dual	3	30%
Summary						divid	2	20%
D50	22					ľ ľ	1	10%
D84 D95	82							
660	121							" " " " " " " " " " " " " " " " " " "
								Particle Size (mm)
								■MY0-2016 ■MY1-2016 ■MY2-2017 ■MY3-2018 ■MY4-2019

Parameter	Gauge		Regional C	urve	Pre-	Existing	g Condit	ion (U'l	[8)		Reference	Reach(es) Data		De	sign (UT	8)		Moni	toring B	aseline (U	J T 8)	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					5.0			7.8			5.6						8.0	8.3		8.7	9		3
Floodprone Width (ft)					7.8			20.0			13				20	25				100			3
BF Mean Depth (ft)					0.6			0.9			0.5						0.8	0.8		0.9	0.9		3
BF Max Depth (ft)					0.9			1.2			0.7						1.0	1.2		1.5	1.7		3
BF Cross Sectional Area (ft ²)					3.7			4.7			3.0						5.9	6.6		7.5	8.3		3
Width/Depth Ratio					5.3			13.6			10.5						10.5	10.0		10.2	10.4		3
Entrenchment Ratio					1.6			2.6			2.3				2.5	3.1		11.1		11.6	12.0		3
Bank Height Ratio					1.1			7.3			1.0						1.0			1.0			3
Profile																							
Riffle length (ft)		I		1	1	T	1	1		1	1	1	1	1			1	3.5	16.9	12	84.6	17.4	21
Riffle slope (ft/ft)					0.035			0.045			0.0480						0.0060	0.0119	0.0172	0.0155	0.0418	0.0117	19
Pool length (ft)																		4.4	14.7	12.8	37.5	8.6	32
Pool Max depth (ft)					1.5			2.6			0.9						1.9			1.9			1
Pool spacing (ft)					15.3			45.2		14.0			33.9		8.0	37.1		4.4	25.8	24.8	94.8	17.6	32
Pattern																							
Channel Beltwidth (ft)		I			23		1	33	1	17		1	25	1	24	48		24			48		2
Radius of Curvature (ft)					4			12		10			13		16	32		16			32		2
Rc:Bankfull width (ft/ft)					0.6			2.3		1.8			2.3		2	4		2			4		2
Meander Wavelength (ft)					32			65		31			38		40	80		40			80		2
Meander Width ratio					3			6.6		5.6			6.8		50	10		50			10		2
Transport parameters					-													-					
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m2																							
Additional Reach Parameters																							
Rosgen Classification							B/C/G					E/C				E/C				E	/C		
Bankfull Velocity (fps)							3.2-4.0																
Bankfull Discharge (cfs)							15																
Valley Length (ft)																							
Channel Thalweg Length (ft)																				82			
Sinuosity							11 - 1.18					1.28			1	.11 - 1.1′	7			1.11			
Water Surface Slope (ft/ft)						0.01	48 - 0.0	172		<u> </u>		0.048				0.004					212		
BF slope (ft/ft)										I								ļ					
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks		-																					
Channel Stability or Habitat Metric Biological or Other																							_
Biological of Other																							

 Table 10a. Baseline Stream Data Summary (Bob's Creek - UT 8)

 Bob's Creek Mitigation Project - NCDMS Project Number 92633

Parameter	Gauge		Regional C	urve	Pre-Ex	cisting (Conditio	on (Bobs	s Cr)		Reference	Reach(es) Data		Desiş	gn (Bobs	s Cr)		Monito	ring Bas	eline (Bo	obs Cr)	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					14.5			25.5			12.7						17.5	15.2			17		2
Floodprone Width (ft)					29.8			45.2			150						100			150			2
BF Mean Depth (ft)					1.1			1.2			0.9						1.3	1.3			1.5		2
BF Max Depth (ft)					1.4			2.0			1.2						1.7	2.2			2.3		2
BF Cross Sectional Area (ft ²)					17.4			29.0			11.4						22.3	19.9			25.2		2
Width/Depth Ratio					12.1			22.3			14.1						14.0	11.3			11.7		2
Entrenchment Ratio					1.2			3.1			11.8						5.7	8.8			9.9		2
Bank Height Ratio					1.2			1.8			1.0						1.0			1.0			2
Profile			•										•										
Riffle length (ft)																							
Riffle slope (ft/ft)							0.0239				0.0344						0.0105						
Pool length (ft)																			No profi	ile measu	red in thi	s reach.	
Pool Max depth (ft)							3.3				2.2						3.3						
Pool spacing (ft)					43.8			171.6		38.8			64.7		53.7	89.4							
Pattern	_																						
Channel Beltwidth (ft)					36			55		30.5			32		43.8	105		43.8			105		2
Radius of Curvature (ft)					7			30		14.5			20		40.3	70		40.3			70		2
Rc:Bankfull width (ft/ft)					0.3			2.1		1.1			1.6		2.3	4		2.3			4		2
Meander Wavelength (ft)					100			145		95			98		87.5	175		87.5			175		2
Meander Width ratio					1.41			3.8		7.5			7.7		5	10		5			10		2
Transport parameters	-				n			-	-				r		1				-				
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																							
Rosgen Classification			•	-			B/C/F					С				С				E/	C		
Bankfull Velocity (fps)						3.	79-6.32																
Bankfull Discharge (cfs)							110																
Valley Length (ft)																							
Channel Thalweg Length (ft)																				37			
Sinuosity							1.17					1.22				1.13		1.13					
Water Surface Slope (ft/ft)							0.0149				(0.0205				0.007							
BF slope (ft/ft)					ļ																		
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric Biological or Other																							
Biological or Other																							

Table 10b. Baseline Stream Data Summary (Bob's Creek) Bob's Creek Mitigation Project - NCDMS Project Number 92633

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Bob's Creek Mitigation Project - NCDMS Project Number 92879

			Cross	Section 1	(UT 8)					Cross	Section 2	(UT 8)					Cross	Section 3	(UT 8)					Cross See	ction 4 (Be	obs Creek	x)				Cross See	ction 5 (Be	obs Creek	<u>s</u>)	
Parameter				Riffle							Pool							Riffle							Riffle							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5
BF Width (ft)	8.3	8.7						11.9	12.4						9.0	9.7						15.2	15.7						17.0	17.3					
Floodprone Width (ft) (approx)	100.0	100.0						NA	NA						100.0	100.0						150.0	150.0						150.0	150.0					
BF Mean Depth (ft)	0.8	0.8						0.9	0.8						0.9	0.9	1			1	1	1.3	1.4		1				1.5	1.5				1	
BF Max Depth (ft)	1.2	1.2						1.9	1.8						1.7	1.8						2.2	2.3						2.3	2.2					
BF Cross Sectional Area (ft ²)	6.6	6.7						10.4	10.1						8.3	9.0						19.9	22.0						25.2	25.5					
Width/Depth Ratio	10.4	11.3						NA	NA						9.8	10.5						11.6	11.2						11.5	11.7					
Entrenchment Ratio	12.0	11.5						NA	NA						11.1	10.3						9.9	9.6						8.8	8.7					
Bank Height Ratio	1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0						1.0	1.0					
d50 (mm)	8.7	9.8													6.5	6.6						22.0	20.3						24.9	22.0					

Table 11b. Monitoring Data - Stream Reach Data Summary Bob's Creek Mitigation Project - NCDMS Project Number 92879

Bob's Creek Mitigation Project - NCD Parameter				ne (UT 8)					MY-1	(UT 8)					MY-2	2 (UT 8)					MY-3	(UT 8)					MY-4	(UT 8)					MY-5	(UT 8)		
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	8.3	8.7		9		2	8.7	9.2		9.7		2																								-
Floodprone Width (ft)		100				2		100				2																								
BF Mean Depth (ft)	0.8	0.9		0.9		2	0.8	0.9		0.9		2																								
BF Max Depth (ft)	1.2	1.5		1.7		2	1.2	1.5		1.8		2																								
BF Cross Sectional Area (ft ²)	6.6	7.5		8.3		2	6.7	7.9		9.0		2																								
Width/Depth Ratio	10.0	10.2		10.4		2	10.8	10.8		10.9		2																								
Entrenchment Ratio	11.1	11.6		12.0		2	10.3	10.9		11.5		2																								
Bank Height Ratio		1.0				2		1.0				2																								
																Pro	file																			
Riffle length (ft)	3.5	16.9	12	84.6	17.4	21																														
Riffle slope (ft/ft)	0.0119	0.0172	0.0155	0.0418	0.0117	19	1																													
Pool length (ft)	4	15	13	38	9	32																														
Pool Max depth (ft)			1.9			1	1								1																					
Pool spacing (ft)	4	26	25	95	18	32	1								1																					
		•				•			•	•	•	•	-	•		Pat	tern	•		•	•	•	•				•	•	•	•		•	•			
Channel Beltwidth (ft)	24			48		2																														
Radius of Curvature (ft)	16			32		2																														
Rc:Bankfull width (ft/ft)	2			4		2																														
Meander Wavelength (ft)	40			80		2																														
Meander Width ratio	50			10		2																														
															4.3.3	tional Rea	.h. De men																			
Rosgen Classification			E/C	C-type			1		E/C	-type			1		Addi	uonai Kea	ch rafall	leters							r –						r –					
Channel Thalweg Length (ft)				324					E/C																											
Sinuosity				- 1.17			1			- 1.17															l –						l –					
Water Surface Slope (Channel) (ft/ft)				0212					0.0																						1					
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																												1								
SC%/SA%/G%/C%/B%BE%																																				
d16/d35/d50/d84/d95																																				
% of Reach with Eroding Banks				0			1			0			1												1											
Channel Stability or Habitat Metric							1						1												1											
Biological or Other																																				

Appendix E Hydrology Data

Table 12. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
August 17, 2016	July 4, 2016	Crest gauge data along with wrack observed on the TOB of UT8 indicate a bankfull event after approximately 1.88 inches of rain documented* in one day.	1

Table 12. Verification of Bankfull EventsBobs Creek Site (DMS Project Number 92879)

*Weather Underground 2016

